Improve lisp compiler and interpreter.

This commit is contained in:
redxef 2022-11-27 00:32:20 +01:00
parent 4180e3b427
commit be97b30e86
Signed by: redxef
GPG key ID: 7DAC3AA211CBD921

View file

@ -2,6 +2,7 @@
# -*- coding: utf-8 -*-
import string
import typing
import asyncio
import signal
@ -21,317 +22,391 @@ try:
except ImportError:
from yaml import SafeLoader
class Expression:
def __init__(self):
pass
def reduce(self, ipc_data):
if self.should_call:
return self.call(ipc_data)
return functools.reduce(self.reduce_function(ipc_data), self.children)
@property
def should_call(self):
return False
@property
def children(self):
raise NotImplemented('TODO: implement in subclass')
def reduce_function(self, ipc_data):
raise NotImplemented('TODO: implement in subclass')
def call(self, ipc_data):
raise NotImplementedError('TODO: implement in subclass')
class LiteralExpression(Expression):
def __init__(self, value):
self._value = value
def __repr__(self) -> str:
return f'"{self._value}"'
@property
def children(self):
return [self._value]
def reduce_function(self, ipc_data):
def reduce(a, b):
raise NotImplemented('I should never be called')
def lazy_fc_if(env, a, b, c):
a.reduce(env)
if a.reduced:
b.reduce(env)
return b
c.reduce(env)
class IntLiteralExpression(LiteralExpression):
def __repr__(self) -> str:
return str(self._value)
def lazy_fc_nif(env, a, b, c):
a.reduce(env)
if not a.reduced:
b.reduce(env)
return b
c.reduce(env)
class BoolLiteralExpression(LiteralExpression):
def __repr__(self) -> str:
return str(self._value)
class AndExpression(Expression):
def __init__(self, children, *args, **kwargs):
self._children = children
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
cs = ' '.join([repr(c) for c in self.children])
return f'(& {cs})'
@property
def children(self):
return self._children
def reduce_function(self, ipc_data):
return lambda a, b: a.reduce(ipc_data) and b.reduce(ipc_data)
class OrExpression(Expression):
def __init__(self, children, *args, **kwargs):
self._children = children
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
cs = ' '.join([repr(c) for c in self.children])
return f'(| {cs})'
@property
def children(self):
return self._children
def reduce_function(self, ipc_data):
return lambda a, b: a.reduce(ipc_data) or b.reduce(ipc_data)
class IfExpression(Expression):
def __init__(self, children, *args, **kwargs):
self._children = children
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
cs = ' '.join([repr(c) for c in self.children])
return f'(? {cs})'
@property
def should_call(self):
return True
@property
def children(self):
return self._children
def call(self, ipc_data):
if self._children[0].reduce(ipc_data):
i = 1
else:
i = 2
return self._children[i].reduce(ipc_data)
class EqExpression(Expression):
def __init__(self, children, *args, **kwargs):
self._children = children
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
cs = ' '.join([repr(c) for c in self.children])
return f'(= {cs})'
@property
def children(self):
return self._children
def reduce_function(self, ipc_data):
def reduce(v0, v1):
print(f'reducing: {repr(self)}')
return v0.reduce(ipc_data) == v1.reduce(ipc_data)
return reduce
class NeqExpression(Expression):
def __init__(self, children, *args, **kwargs):
self._children = children
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
cs = ' '.join([repr(c) for c in self.children])
return f'(!= {cs})'
@property
def children(self):
return self._children
def reduce_function(self, ipc_data):
def reduce(v0, v1):
return v0.reduce(ipc_data) != v1.reduce(ipc_data)
return reduce
class GtExpression(Expression):
def __init__(self, children, *args, **kwargs):
self._children = children
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
cs = ' '.join([repr(c) for c in self.children])
return f'(> {cs})'
@property
def children(self):
return self._children
def reduce_function(self, ipc_data):
def reduce(v0, v1):
return v0.reduce(ipc_data) > v1.reduce(ipc_data)
return reduce
class LtExpression(Expression):
def __init__(self, children, *args, **kwargs):
self._children = children
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
cs = ' '.join([repr(c) for c in self.children])
return f'(< {cs})'
@property
def children(self):
return self._children
def reduce_function(self, ipc_data):
def reduce(v0, v1):
return v0.reduce(ipc_data) < v1.reduce(ipc_data)
return reduce
class LoadExpression(Expression):
def __init__(self, value, *args, **kwargs):
self._value = value
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
return f'(load {self._value})'
@property
def should_call(self):
return True
@property
def children(self):
return [self._value]
def call(self, ipc_data):
ipc_value = ipc_data
for k in self._value[0].children[0].strip('.').split('.'):
def fc_load(env, path):
ipc_value = env.input
for k in path.strip('.').split('.'):
ipc_value = ipc_value[k]
return ipc_value
class HasKeyExpression(Expression):
def __init__(self, value, *args, **kwargs):
self._value = value
super().__init__(*args, **kwargs)
def __repr__(self) -> str:
return f'(has-key {self._value})'
@property
def should_call(self):
return True
@property
def children(self):
return [self._value]
def call(self, ipc_data):
ipc_value = ipc_data
for k in self._value[0].children[0].strip('.').split('.'):
def fc_has_key(env, path):
ipc_value = env.input
for k in path.strip('.').split('.'):
try:
ipc_value = ipc_value[k]
except KeyError:
return False
return True
class Environment:
expression_mapping = {
'&': AndExpression,
'|': OrExpression,
'?': IfExpression,
'=': EqExpression,
'!=': NeqExpression,
'>': GtExpression,
'<': LtExpression,
'load': LoadExpression,
'has-key': HasKeyExpression,
def __init__(self, input):
self._input = input
self._variables = {}
self._functions = {
'__last__': lambda *a: a[-1], # special function, if multiple expressions, execute all and return result of last one
'defvar': lambda env, n, v: env.set_variable(n, v),
'write': lambda _, a: print(a),
'load': fc_load,
'has-key': fc_has_key,
'=': lambda _, a, b: a == b,
'!=': lambda _, a, b: a != b,
'>': lambda _, a, b: a > b,
'<': lambda _, a, b: a < b,
'>=': lambda _, a, b: a >= b,
'<=': lambda _, a, b: a <= b,
'+': lambda _, *a: sum(a),
'-': lambda _, a, b: a - b,
'*': lambda _, *a: functools.reduce(lambda a, b: a * b, a),
'/': lambda _, a, b: a // b,
}
self._lazy_functions = {
'?': lazy_fc_if,
'!?': lazy_fc_nif,
}
def group_tokens(tokens: list[str]) -> list[list[str]]:
groups = []
current_group = []
@property
def input(self):
return self._input
brace_count = 0
for token in tokens:
if token == '(':
brace_count += 1
elif token == ')':
brace_count -= 1
if brace_count == 0:
groups += [current_group]
current_group = []
elif brace_count == 0:
groups += [[token]]
def set_variable(self, name: str, value: object):
self._variables[name] = value
def get_variable(self, name: str):
return self._variables[name]
def get_function(self, name: str):
return self._functions[name]
def get_lazy_function(self, name: str):
return self._lazy_functions[name]
class Expression:
STATE_CONSTRUCTED = 0
STATE_REDUCED = 1
def __init__(self):
self._state = Expression.STATE_CONSTRUCTED
self._reduced = None
def _reduce(self, env: Environment, args: list[object]):
_ = env, args
raise NotImplementedError('Implement in subclass')
def reduce(self, env: Environment):
if self._state == Expression.STATE_REDUCED:
return
self._reduced = self._reduce(env, [])
self._state = Expression.STATE_REDUCED
@property
def reduced(self) -> object:
if self._state != Expression.STATE_REDUCED:
raise RuntimeError('Tried to get the reduced value before reducing')
return self._reduced
class Constant(Expression):
def __init__(self, value):
super().__init__()
self._value = value
def __repr__(self):
return repr(self._value)
def _reduce(self, env: Environment, args: list[Expression]):
_ = env, args
return self._value
class VariableSet(Constant):
pass
class VariableGet(Constant):
def _reduce(self, env: Environment, args: list[Expression]):
_ = args
return env.get_variable(self._value)
class Function(Expression):
def __init__(self, fc, args: list[Expression]):
super().__init__()
self._fc = fc
self._args = args
def __repr__(self):
return f'({self._fc} {self._args})'
def _reduce(self, env: Environment, args: list[Expression]):
try:
fc = env.get_function(self._fc)
[a.reduce(env) for a in args]
r = fc(env, *[a.reduced for a in args])
except KeyError as e:
fc = env.get_lazy_function(self._fc)
r = fc(env, *args)
return r
def reduce(self, env: Environment):
if self._state == Expression.STATE_REDUCED:
return
self._reduced = self._reduce(env, self._args)
self._state = Expression.STATE_REDUCED
class Token:
CONSTANT_STRING = 0
CONSTANT_INTEGER = 10
CONSTANT_BOOLEAN = 20
KEYWORD = 30
VARIABLE_SET = 40
VARIABLE_GET = 50
FUNCTION = 60
GROUPING_OPEN = 70
GROUPING_CLOSE = 80
WHITESPACE = 90
def __init__(self, t, v):
self.t = t
self.v = v
def __repr__(self):
return f'{self.v}::{self.t}'
def to_expression(self):
if self.t == Token.CONSTANT_STRING:
return Constant(self.v[1:-1]) # slice away the quotes
if self.t == Token.CONSTANT_INTEGER:
return Constant(int(self.v, base=0))
if self.t == Token.CONSTANT_BOOLEAN:
return Constant(self.v == 'True')
if self.t == Token.KEYWORD:
raise RuntimeError(f'This is a meta token type and should be swallowed by the sanitizer: {self}')
if self.t == Token.VARIABLE_GET:
return VariableGet(self.v)
if self.t == Token.VARIABLE_SET:
return VariableSet(self.v)
if self.t == Token.FUNCTION:
raise RuntimeError('Cant construct function just from its token')
if self.t == Token.GROUPING_OPEN or self.t == Token.GROUPING_CLOSE:
raise RuntimeError('Groupings should never be constructed, this is a bug')
if self.t == Token.WHITESPACE:
raise RuntimeError('Whitespaces should not be present in this stage of the build')
raise RuntimeError(f'The token type {self.t} is not implemented')
def token_extract_string(stream: str) -> tuple[Token, str]:
if stream[0] != '"':
raise ValueError('No such token in stream')
i = stream.find('"', 1)
return Token(Token.CONSTANT_STRING, stream[:i+1]), stream[i+1:]
def token_extract_integer(stream: str) -> tuple[Token, str]:
i = 0
base = None
if stream[i] in '+-':
i += 1
if stream[i] in '0123456789':
i += 1
else:
current_group += [token]
return groups
raise ValueError('Malformed integer')
def build_expression(tokens: list[str]) -> Expression:
if tokens[0] == '(' and tokens[-1] == ')':
tokens = tokens[1:-1]
token_groups = group_tokens(tokens)
if stream[i] in 'xbo':
base = stream[i]
i += 1
int_set = {None: '0123456789', 'x': '0123456789abcdefABCDEF', 'b': '01', 'o': '01234567'}[base]
while stream[i] in int_set:
i += 1
return Token(Token.CONSTANT_INTEGER, stream[:i]), stream[i:]
expressions = [build_expression(ts) for ts in token_groups[1:]] if len(token_groups) > 1 else []
root_expression = None
token = token_groups[0][0]
if token in expression_mapping:
root_expression = expression_mapping[token](expressions)
elif token.startswith('"'):
root_expression = LiteralExpression(token[1:-1])
elif token.isnumeric():
root_expression = IntLiteralExpression(int(token))
elif token in ('True', 'False'):
root_expression = BoolLiteralExpression(token == 'True')
assert isinstance(root_expression, Expression)
return root_expression
def token_extract_boolean(stream: str) -> tuple[Token, str]:
if stream.startswith('True'):
return Token(Token.CONSTANT_BOOLEAN, stream[:4]), stream[4:]
elif stream.startswith('False'):
return Token(Token.CONSTANT_BOOLEAN, stream[:5]), stream[5:]
raise ValueError('No such token in stream')
def take_space(s: str) -> tuple:
if s[0] in ' \n':
return None, s[1:]
return None, s
def take_operator(s: str) -> tuple:
token = ''
for c in s:
if c in ''.join(set(expression_mapping.keys())):
token += c
def token_extract_keyword(stream: str) -> tuple[Token, str]:
i = 0
if stream[i] in string.ascii_letters + '_-><=!+-*/?':
i += 1
else:
break
if token == '':
return None, s
else:
return token, s[len(token):]
raise ValueError('No keyword in stream')
while stream[i] in string.ascii_letters + '_-><=!+-*/?':
i += 1
return Token(Token.KEYWORD, stream[:i]), stream[i:]
def take_brace(s: str) -> tuple:
if s[0] in '()':
return s[0], s[1:]
else:
return None, s
def token_extract_grouping_open(stream: str) -> tuple[Token, str]:
if stream[0] == '(':
return Token(Token.GROUPING_OPEN, '('), stream[1:]
raise ValueError('No such token in stream')
def take_literal(s: str) -> tuple:
token = '"'
if s[0] != '"':
return None, s
for c in s[1:]:
token += c
if c == '"':
break
if not token.endswith('"'):
raise ValueError('Missing closing quotes (`"`)')
return token, s[len(token):]
def token_extract_grouping_close(stream: str) -> tuple[Token, str]:
if stream[0] == ')':
return Token(Token.GROUPING_CLOSE, ')'), stream[1:]
raise ValueError('No such token in stream')
def take_int_literal(s: str) -> tuple:
token = ''
for c in s:
if not c.isnumeric():
break
token += c
if token == '':
return None, s
return token, s[len(token):]
def token_extract_space(stream: str) -> tuple[Token, str]:
i = 0
while stream[i] in string.whitespace:
i += 1
return Token(Token.WHITESPACE, stream[:i]), stream[i:]
def take_bool_literal(s: str) -> tuple:
if s.startswith('True'):
return 'True', s[len('True'):]
if s.startswith('False'):
return 'False', s[len('False'):]
return None, s
def tokenize(s: str) -> list[str]:
operator_extractors = [
take_operator,
take_brace,
take_literal,
take_int_literal,
take_bool_literal,
take_space,
def tokenize(program: str) -> list[Token]:
extractors = [
token_extract_boolean,
token_extract_integer,
token_extract_string,
token_extract_keyword,
token_extract_grouping_open,
token_extract_grouping_close,
token_extract_space,
]
p = program
tokens = []
while s != '':
previous_len = len(s)
for operator_extractor in operator_extractors:
token, s = operator_extractor(s)
if token is not None:
tokens += [token]
while p:
success = False
for e in extractors:
try:
t, p = e(p)
tokens += [t]
success = True
break
if len(s) == previous_len:
raise ValueError(f'Could not tokenize string {s}')
except ValueError:
pass
if not success:
raise ValueError('Program is invalid')
return [t for t in tokens if t.t != Token.WHITESPACE]
def tokenize_sanitize_function(token_before: Token | None, token: Token, token_after: Token | None) -> Token | None:
if token_before is None:
return
if token_before.t == Token.GROUPING_OPEN and token.t == Token.KEYWORD:
return Token(Token.FUNCTION, token.v)
def tokenize_sanitize_setvar(token_before: Token | None, token: Token, token_after: Token | None) -> Token | None:
if token_before is None:
return
if (token_before.t == Token.FUNCTION and token_before.v == 'defvar') and token.t == Token.KEYWORD:
return Token(Token.VARIABLE_SET, token.v)
def tokenize_sanitize_getvar(token_before: Token | None, token: Token, token_after: Token | None) -> Token | None:
if token_before is None:
if token.t == Token.KEYWORD:
return Token(Token.VARIABLE_GET, token.v)
return
if (token_before.t != Token.FUNCTION or token_before.v != 'defvar') and token.t == Token.KEYWORD:
return Token(Token.VARIABLE_GET, token.v)
def _tokenize_sanitize(tokens: list[Token]) -> tuple[bool, list[Token]]:
sanitizers = [
tokenize_sanitize_function,
tokenize_sanitize_setvar,
tokenize_sanitize_getvar,
]
new_tokens = []
changed = False
for i in range(len(tokens)):
for s in sanitizers:
p_token = new_tokens[i-1] if i > 0 else None
n_token = tokens[i+1] if i < (len(tokens)-1) else None
new_token = s(p_token, tokens[i], n_token)
if new_token is not None:
changed = True
new_tokens += [new_token]
break
else:
new_tokens += [tokens[i]]
return changed, new_tokens
def tokenize_sanitize(tokens: list[Token]) -> list[Token]:
_, tokens = _tokenize_sanitize(tokens)
return tokens
def parse(s: str) -> Expression:
tokens = tokenize(s)
return build_expression(tokens)
def take_token_group(tokens: list[Token], n: int = 1) -> list[Token]:
i = 0
start = i
group_count = 0
consider_groups = False
while n:
if tokens[i].t == Token.GROUPING_OPEN:
consider_groups = True
if group_count == 0:
start = i
group_count += 1
elif tokens[i].t == Token.GROUPING_CLOSE:
group_count -= 1
if group_count == 0:
consider_groups = False
else:
if not consider_groups:
start = i
if group_count == 0:
n -= 1
if group_count < 0:
raise ValueError('reached past end')
i += 1
return tokens[start:i]
def unwrap_token_group(tokens: list[Token]) -> list[Token]:
if tokens[0].t != Token.GROUPING_OPEN:
return tokens
brace_count = 0
for i, t in enumerate(tokens):
brace_count += int(t.t == Token.GROUPING_OPEN)
brace_count -= int(t.t == Token.GROUPING_CLOSE)
if i == len(tokens) - 2:
if brace_count > 0:
tokens = tokens[1:-1]
break
return tokens
def build(tokens: list[Token]) -> Expression:
tokens = unwrap_token_group(tokens)
token_groups: list[list[Token]] = []
i = 1
while True:
try:
token_groups += [take_token_group(tokens, n=i)]
i += 1
except IndexError:
break
# special function case
if len(token_groups[0]) == 1 and token_groups[0][0].t == Token.FUNCTION:
token_0 = token_groups[0][0]
args = [build(tg) for tg in token_groups[1:]]
return Function(token_0.v, args)
# combine to multiple statements
if len(token_groups) > 1:
return Function('__last__', [build(tg) for tg in token_groups])
# create a basic expression
if len(token_groups) == 1 and len(token_groups[0]) == 1:
return token_groups[0][0].to_expression()
raise RuntimeError(f'Did not handle token case in build function, token_groups: {token_groups}')
def parse(program: str) -> Expression:
tokens = tokenize_sanitize(tokenize(program))
expression = build(tokens)
return expression
class Filter(Expression):
@ -453,7 +528,8 @@ def window_new(runtime_data: RuntimeData, *, debug):
print(json.dumps(e.ipc_data))
async with runtime_data.lock:
for i, cfg in enumerate(runtime_data.programs):
if cfg.match.reduce(e.ipc_data):
cfg.match.reduce(Environment(e.ipc_data))
if cfg.match.reduced:
container_id = e.ipc_data['container']['id']
await ipc.command(f'for_window [con_id="{container_id}"] focus')
await ipc.command(f'move container to workspace {cfg.workspace}')